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Abstract
We relate φ(x, s), the average number of sites at a transverse distance x in
the directed animals with s sites in d transverse dimensions, to the two-point
correlation function of a lattice gas with nearest neighbour exclusion in d
dimensions. For large s, φ(x, s) has the scaling form s

Rd
s
f (|x|/Rs), where Rs

is the root-mean square radius of gyration of animals of s sites. We determine
the exact scaling function for d = 1 to be f (r) =

√
π

2
√

3
erfc(r/

√
3). We also

show that φ(x = 0, s) can be determined in terms of the animal number
generating function of the directed animals.

PACS numbers: 64.60.Ak, 05.40.Fb, 05.50.+q

The directed animals (DA) problem describes the large-scale geometrical structure of
subcritical directed percolation clusters, and qualitatively models diverse situations such as
trees, river networks and dilute polymers in a flowing solvent [1, 2]. Formally, it corresponds
to the p → 0 limit of the directed percolation problem [3]. The imposed directionality
changes the universality class, and the large-scale structure of directed animals is different
from isotropic animals. The enumeration of directed site animals in d + 1 dimensions is
related to hard-core lattice gas (HCLG) at negative activity with repulsive interactions in d
dimensions and the Yang–Lee edge problem in d dimensions [4–7]. This equivalence helps to
obtain several exact results for the directed animals problem [8–11]. In particular, the critical
exponents θ and the transverse size exponent ν⊥ are known exactly in d = 0, 1 and 2 [8]. For
reviews of the available exact results, see [12]. The problem is also related to a recently studied
model of quantum gravity [13], and there is an unexpected relation between the number of
distinct eigenvalues for the Potts model partition function on strips of width w and the number
of directed animals with w sites in two dimensions [14].
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Figure 1. Schematic figure of a directed animal of size 20 on a square lattice.

In this paper, we extend the known relation between the directed site animals enumeration
(DSAE) problem to hardcore lattice gases at negative activity to obtain the average number of
sites at a given transverse distance x from the origin for (d + 1)-dimensional directed animals
from the density–density correlation function of the lattice gas in d dimensions. For d = 1,
using the exact generating function for this correlation function, we determine the scaling form
for the average number of sites at a given transverse distance in a two-dimensional directed
animal having s sites, for large s. In this case, the average transverse size of the animal scales
as sν⊥ , where ν⊥ is known to be 1

2 for d = 1. For large s, the average value of the qth transverse
moment 〈|x|q〉 varies as R

q
s Cq , where Rs is the root mean square radius of gyration of animals

of s sites. Using the exact scaling function we are able to determine the universal constants
Cq for all q.

We consider directed animals on a square lattice. Each site (x, t) has two bonds directed
outwards towards the sites (x + 1, t + 1) and (x − 1, t + 1) (figure 1). A directed site animal A
rooted at the origin is a set of occupied sites including the origin, such that for each occupied
site (x, t) other than the origin, at least one of the two sites (x − 1, t − 1) and (x + 1, t − 1) is
also occupied. Figure 1 shows a directed animal on a square lattice in two dimensions. The
number of sites in A will be denoted by |A| or s. We define n(x|A) as the number of sites
of A having the transverse coordinate x. In figure 1, n(x|A) takes the values 1, 3 and 0 for x
equal to −4, 2, 5, respectively, with |A| = 20. We shall define the radius of gyration, of A as√

1
s

∑
x2, where the sum is over all sites of the animal. The animal shown in figure 1 has a

squared radius of gyration 21/4.
We define A(y) as y |A| summed over all animals A rooted at the origin. If As is the

number of distinct animals having s sites, it is easy to see that

A(y) =
∑
A

y |A| =
∞∑

s=1

Asy
s. (1)

For large s,As varies as λss−θ , where θ is a critical exponent. The radius of gyration Rs

is expected to vary as sν⊥ , where the exponent ν⊥ is related to the animals number exponent θ
by the hyperscaling relation θ = dν⊥ [15].

For a directed animal of size s we define the generating function �(x, y) as

�(x; y) =
∑
A

n(x|A)y |A| (2)
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where the summation over A is the summation over all animal configurations. This can be
written as

�(x; y) =
∑

s

φ(x, s)Asy
s (3)

where φ(x, s) is the value of n(x,A) averaged over all animals A of size s.
The DSAE problem in d + 1 dimensions is related to the time development of thermal

relaxation of a hard core lattice gas (HCLG) with nearest neighbour exclusion on the d-
dimensional lattice [5]. On a d-dimensional body-centred hypercubical lattice (a d-dimensional
body-centred hypercubical lattice is a hypercubical lattice having 2d−1 bonds going outwards
from each site), the dynamics of the lattice gas is defined as follows: the evolution is stochastic
discrete-time Markovian. At odd (even) times, all the odd (even) sites are examined in parallel,
and if a site has all neighbours empty, its occupation number is set to 1 with probability p,
and to 0 with probability (1 − p). The rates of transitions satisfy a detailed balance condition
corresponding to the Hamiltonian

H = +∞
∑
〈ij〉

ninj − (ln z)
∑

i

ni (4)

with z = p/(1 − p).
Let ρ(p) be the average density of particles in the steady state of this system. In [5], it

was shown that we have

A(y) = −ρ(p = −y). (5)

For the d = 1 nearest-neighbour-exclusion lattice gas, it is straightforward to determine
the average density corresponding to chemical activity p/(1 − p). This for the square lattice
gives

A(y) = −1

2

[
1 −

√(
1 + y

1 − 3y

) ]
. (6)

The animal numbers As , which are the coefficients in the Taylor expansion of A(y) for
the square lattice, can be written as [8]

As =
∫ 2π

0

dθ

2π
(1 + cos θ)(1 + 2 cos θ)s−1. (7)

For large s,As ∼ 1√
3π

3ss− 1
2 , which shows that in this case λ = 3, and θ = 1/2.

The derivation of equation (5) is easily generalized to the case where the values of p at
different sites are different. Let the probability that site i is occupied at time t + 1 given that
all its neighbours are unoccupied at time t be pi . Then the rates of this process still satisfy the
detailed balance condition corresponding to the Hamiltonian

H = +∞
∑
〈ij〉

ninj −
∑

i

(ln zi)ni (8)

where zi = pi/(1 − pi). The probability that site i is occupied in the steady state depends on
the pj for all sites j , and will be denoted by ρi({pj }). In the corresponding DA problem, we
have to define the weight of an animal A as the product of weights of all occupied sites, the
weight corresponding to a site with x-coordinate j being yj . Then define Ai({yj }) as the sum
of weights of all animals rooted at i. Then, clearly Ai({yj}) is a formal power series in the
variables {yj}. If all yj = y, this becomes independent of i, and reduces to the function A(y).
For unequal yj ’s, equation (5) becomes

Ai({yj }) = −ρi({pj = −yj }). (9)
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Applying the operator yx
∂

∂yx
on the weight of any particular animal gives us the weight

multiplied by the number of occupied sites with transverse coordinate x in the animal. Thus,
clearly, we get

yx
∂

∂yx
A0({yj })

∣∣∣∣
{yj=y}

= �(x; y). (10)

Let 	({zj}) be the grand partition function for the HCLG given by the Hamiltonian in
equation (8) with zj = pj/(1−pj). Then, 	({zj }) is a linear function of each of the variables
zj . Let ηj be the indicator variable taking value 1 if the site j is occupied, and 0 if not. The
density–density correlation function of the gas G(i, k) is defined as

G(�, k; {zj }) = 〈ηkηi〉 − 〈ηk〉〈ηi〉 = zk
∂

∂zk
ρi({zj }). (11)

When zj = z for all j , the correlation function depends only on (i − k) and hence can be
written as G(i − k; z).

Now, using equation (9), we get

�(x; y) = − 1

1 + y
G

(
x; z = − y

1 + y

)
. (12)

This equation is the main result of this paper, and equates the pair correlation function
G(x; z) of the HCLG with the function �(x; y) which gives the density profile of the DA
problem.

For the special case d = 1, it is a simple exercise to calculate G(x; z) explicitly, using
transfer matrix methods [16]. This gives

G(x; z) = z

1 + 4z

[
1 − √

1 − 4z

1 +
√

1 + 4z

]|x|
(13)

and we get the explicit expression for �(x; y) on the square lattice to be

�(x; y) = y

(1 + y)(1 − 3y)

[
1 −

√
1 − 3y

1 + y

]|x| [
1 +

√
1 − 3y

1 + y

]−|x|

. (14)

This determines the density profile in the constant fugacity ensemble, where an animal
having s sites has weight ys . However, it is more instructive to look at the profile in the
constant-s ensemble. This is obtained by looking at the Taylor coefficient of ys in the above
equation. This can become rather messy. However, the behaviour for large s can be determined
easily.

In general, for any dimension d, for large s, φ(x, s) has the scaling form

φ(x, s) ∼ s

Rd
s

f

( |x|
Rs

)
. (15)

Usually the argument of the scaling function is defined only up to a multiplicative constant.
We have made a specific choice for this by using the variable as |x|/Rs . The normalization of
scaling function f (r) is chosen such that it satisfies∫ ∞

−∞
ddx f (|x|) = 1 (16)

∫ ∞

−∞
ddx |x|2f (|x|) = 1. (17)
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In the DA problem, as the number of animals increases as λs , the series expansions for
�(x; y) or A(y) in powers of y converge for y < yc = 1/λ. For y near yc, the singular part
of the function A(y) varies as (1 − yλ)θ−1. For the HCLG problem, this corresponds to a
singularity in the series for the density ρ in powers of activity for the activity zLY = −(1+λ)−1

(equation (12)). This singularity on the negative real line is the Lee–Yang edge singularity for
this problem.

For z near the critical value z = zLY, this correlation function G(x; z) is expected to have
the scaling form

G(x; z = zLY e−ε) = cε−ag(b|x|εν) + higher order terms in ε (18)

where b and c are non-universal, lattice-dependent constants. We choose b such that
g(ξ) = exp(−ξ) for large ξ , and c is fixed by requiring g(0) = 1.

The scaling function g(ξ) tends to a constant limiting value as ξ tends to zero, and
decreases to zero exponentially fast as ξ tends to infinity. Let the power-series expansion of
g(ξ) about ξ = 0 be given by

g(ξ) =
∞∑

k=0

gkξ
k. (19)

Substituting this in equation (18), we get

G(x; z) ∼
∞∑

k=0

gkb
k|x|k

(
1 − z

zLY

)νk−a

. (20)

To get φ(x, s), we need to determine the coefficient of zs in the above expansion. From
the binomial expansion of

(
1 − z

zLY

)νk−a
we immediately get

G(x; z) ∼
∞∑

s=0

(
z

zLY

)s ∞∑
k=0

gkb
k|x|k �(a + s − νk)

�(s + 1)�(a − νk)
. (21)

For fixed k, for large s, we have

�(s + a − νk)

�(s + 1)
→ sa−1−νk . (22)

Using this in equation (21), we get

f (|x|s−ν⊥ ) =
∞∑

k=0

gk

( |x|
sν

)k 1

�(a − νk)
(23)

where the correlation length exponent ν for the HCLG problem is the same as the transverse
size exponent ν⊥ for directed animals.

For d = 1, it is easy to determine G(x; z) explicitly. In this case, using equation (13), we
get the scaling form for G(x; z) as

G(x; ε) = 1

4ε
exp(−2x

√
ε) (24)

so that a = 1, ν = 1/2, b = 2 and c = 1/4. The scaling function g(ξ) is simply given by

g(ξ) = exp[−ξ ] (25)

hence, gk = 1/�[k + 1]. Using this, and the values of a and ν in equation (23), we get the
leading singular behaviour of φ(x, s)As on the square lattice to be

φ(x, s)As = 1

4
y−s

c

∞∑
k=0

(
−

√
3x√
s

)k

�(k + 1)

1

�
(
1 − k

2

) . (26)
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Since �
(
1 − k

2

)
has poles when k is an even integer, only the odd terms contribute to the

sum. The resulting series is easy to sum explicitly, giving

φ(x, s)As = 1

4
3s erfc

(√
3x

2
√

s

)
+ correction to scaling terms (27)

where erfc(x) = 2√
π

∫ ∞
x

e−x2
dx.

This gives φ(x, s) for large s to be

φ(x, s) =
√

3πs

4
erfc

(√
3x

2
√

s

)
+ correction to scaling terms (28)

From φ(x, s) we can also derive the expression for the qth transverse moment of the
directed animals. The qth transverse moment of a cluster of size s denoted by µqs is defined
as

µqs =
s∑

i=−s

φ(i, s)|i|q . (29)

Using the scaling form of φ(i, s), for large s, we see that
(
µqs

/
sR

q
s

)
is a universal constant.

Denoting it by Cq , we get

µqs

sR
q
s

= Cq =
∫ ∞

−∞
ddx |x|qf (|x|). (30)

For d = 1, we get

Cq = 1

q + 1
(3)

q

2 �
[
1 +

q

2

]
(31)

and Rs = 2
3

√
s. Hence, we get the scaling function (16) in d = 1 to be

f (r) =
√

π

2
√

3
erfc

(
r√
3

)
. (32)

In the entire low-density phase of the HCLG, in any dimension d, we expect the correlation
function G(x; z) to have an exponential decay at large |x|. But the behaviour of the scaling
function f (r) for large r is in general different. Suppose ln f (r) varies as −rα for large r.
Putting this behaviour in equation (3), and using As ∼ λs and equation (12) , we get

G(x; zLY e−ε) ∼
∑

s

exp(−|x|αs−να − εs). (33)

For large |x|, the integral can be estimated by the steepest descent, and gives log g(ξ)

varying as ξ
α

1+να . Since this should be linear in ξ , we see that α = 1
1−ν

. As a check, we see
that in d = 1, ν = 1/2, and f (r) varies as exp(−r2) for large r.

The case x = 0 is special, in that the density–density correlation function G(0, z) is
always equal to ρ(1 − ρ) for the hard-core lattice gas for any d-dimensional lattice. Hence, if
one knows ρ as a function of the activity z ( equivalently, in the DA problem, one knows the
animal number generating function A(y)), then one can determine �(0; y) in terms of A(y)

alone. For a (d + 1)-dimensional DA on a body-centred hypercubical lattice it is given by

�(0; y) = 1

1 + y
A(y)[1 + A(y)]. (34)

For d = 1, using the A(y) from equation (6), we get for the square lattice DA problem

�(0; y) = y

1 − 2y − 3y2
. (35)
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Expanding in powers of y we get

φ(0, s) = 3s + (−1)s−1

4As

(36)

where As is as given in equation (7). For large s, φ(0, s) varies as s1/2 as expected.
A similar analysis can be extended to higher dimensions. In general, the scaling function

f (r) tends to a finite value as r tends to 0, and hence φ(0, s) varies as s1−θ .
For d > 7, mean-field theory becomes asymptotically exact [19] with Rs ∼ s1/4 and the

scaling form of f (r) is

f (r) = 2

	d

1

rd−2
exp(−r2) (37)

where 	d is the surface area of a d-dimensional unit sphere and is equal to 	d = 2πd/2

�(d/2)
.
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